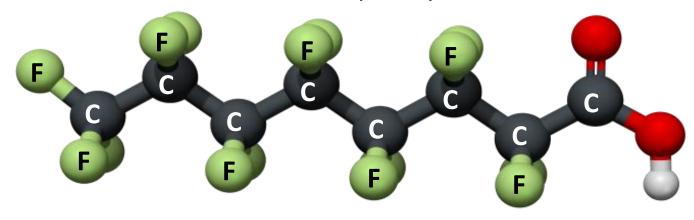
The Analysis for PFAS in Pennsylvania: An Evaluation of Current Methods, Proposed Methodologies and the Application of New Technologies

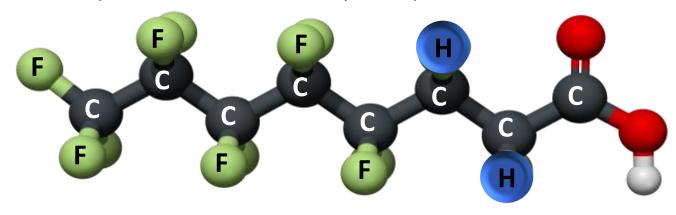
PA Chamber Environmental Conference October 27, 2022

Charles Neslund

Scientific Officer and PFAS Practice Leader



Environment Testing

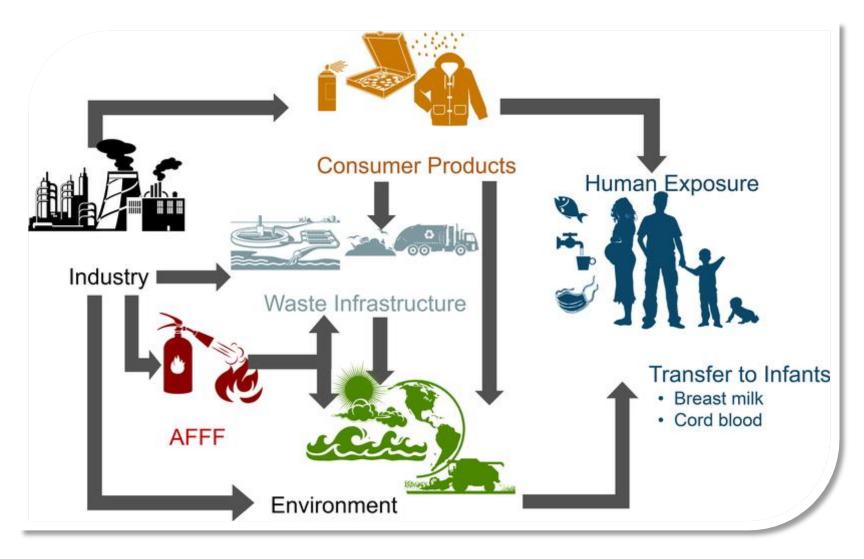

America

Per and Poly

Perfluorinated = Completely Fluorinated

Polyfluorinated = Incompletely Fluorinated

cample Uses Copyright © 2022 Eurofins



Automotive Aerospace Metal Finishers

Textiles
Carpet/Furniture
Paper/Packaging

Paint Chemicals Personal Care

Semiconductor Mining Stone Cutting

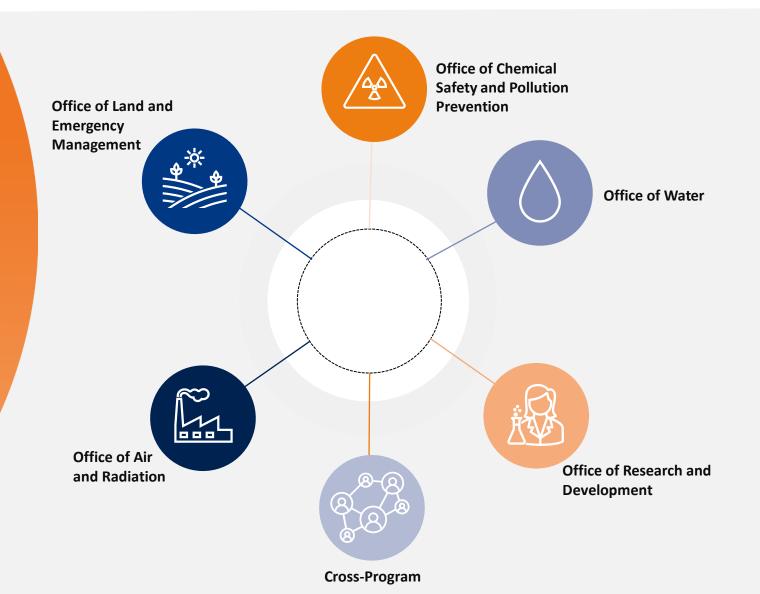
Source: Sunderland et al. (2019)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380916/eurofins

Environment Testing America

RESEARCH

increase understanding of PFAS exposures and toxicities, human health and ecological effects


RESTRICT

proactively prevent PFAS from entering air, land, and water at levels that can adversely impact human health and the environment

REMEDIATE

Broaden and accelerate the cleanup of PFAS contamination to protect human health and ecological systems

PFAS STRATEGIC ROADMAP

TASK FORCE

Identify FFF & Monitor health effects

INCINERATION

Moratorium until guidance is in place

PROCUREMENT

Study items procured containing PFAS

REMEDIATION SCHEDULE

For PFAS release sites

2022 NATIONAL DEFENSE AUTHORIZATION ACT (NDAA)

The Fiscal Year 2022 NDAA; S. 1605 was signed into law with funding for addressing PFAS with a focus on AFFF and Drinking Water

Temporary Moratorium on Incineration of PFAS Materials

until DoD publishes guidance on destruction and disposal or EPA publishes in the Federal Register a final rule regarding destruction and disposal

Directs GAO to Audit DoD Procurement

of certain items that contain PFAS substances, to assess the extent to which information is available, and the feasibility of prohibiting said items

Creation of a PFAS Task Force

to identify an effective alternative to PFAS firefighting foam and monitor the health aspects of exposure to PFAS

Completion of Remediation Schedule

and associated cost estimates must be submitted within 270 days for DoD sites identified as having a release of PFAS

HAZARDOUS SUBSTANCES - CERCLA

EPA Takes Steps to Designate PFOA and PFOS as Hazardous Substances Under CERCLA

Propose to designate
PFOA and PFOS as
CERCLA hazardous
substances

Issue advance notice of proposed rulemaking on various PFAS under CERCLA

https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024

Proposed Rule

EPA Submits to OMB, 1/10/22

OMB Review

90 days on average

Comments

Public comment period, Spring 2022

Final Rule

Summer of 2023

HAZARDOUS CONSTITUENTS - RCRA

EPA proposes to add PFOA, PFOS, PFBS, and GenX as RCRA "hazardous constituents."

In an EPA letter to NM
Gov. this will be based on
EPA's evaluation of
existing data alongside
the establishment of a
record to support the
proposed rule.

Those chemicals listed are subject to corrective action requirements under RCRA at hazardous waste treatment, storage, and disposal facilities.

PFOA PFOS PFBS GenX

Method Selection

Pre-Planning
Quality, Regulatory &
Laboratory Drivers

Environment Testing America

What Are The Data Being Used For?

Driven by regulatory framework

Compliance

Risk tolerance and mitigating

Risk associated with

unknowns

Due Diligence Litigation `

Defensible data that can withstand legal scrutiny

ence Treatment

ent Measure the efficacy of the process

QUALIT

DRIVERS

STATE ACTIONS: DRINKING WATER LIMITS 20 12 PFAS (ppt) 10 RINKING ***** eurofins **Environment Testing 12** Copyright © 2022 Eurofins America

PFAS	MCLG (ng/L)	MCL (ng/L)	MCLs Protective Of
PFOA	8	14	Adverse developmental effects (including neurobehavioral and skeletal effects)
PFOS	14	18	Adverse immune system effects (including immune suppression)

MCLG = maximum contaminant level goal

MCL = maximum contaminant level

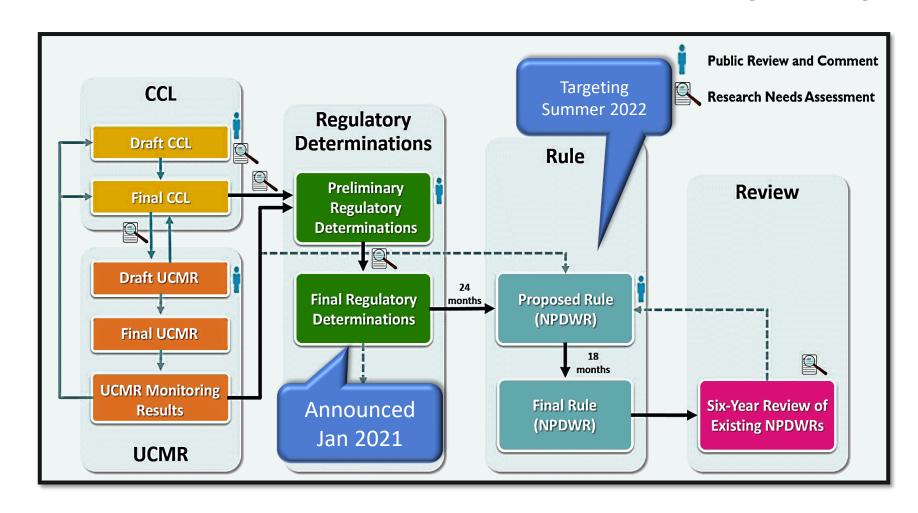
ng/L = nanograms per liter = parts per trillion (ppt)

	NY	MI	NJ	NH	PA	MA	VT	WA
PFOA	10	8	14	12	14	20*	20*	10
PFOS	10	16	13	15	18	20*	20*	15

^{*}The MCL for MA & VT is for a group of five (VT) or six (MA) PFAS, including PFOA and PFOS (not individual contaminants).

EPA DRINKING WATER METHODS

EPA 537.1 EPA 533



Environment Testing America

RINKING

Copyright © 2022 Eurofins

PFAS Maximum Contaminant Levels (MCLs)

RINKING

SDWA: UCMR 5

Unregulated Contaminant Monitoring Rule

Rule Adopted

Analytes

Monitoring

Final Rule Adopted, Dec 2021

UCMR 5 period spans 2022–2026

29 PFAS Analytes

Includes all analytes from 537.1 & 533

Will occur 2023 - 2025

PWS serving >10,000
PWS serving 3,300-10,000
Small systems serving < 3,300

RINKING Copyright © 2022 Eurofins

SDWA: UCMR 5

PFAS Analyte List

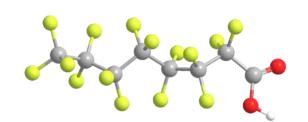
537.1 Analytes			533 Analytes	
PFBS	PFUnA	DONA	NFDHA	
DELLVA	DED a A	LIEDO DA	PFBA	
PFHxA	PFDoA	HFPO-DA	PFEESA	
PFHxS	PFTA		PFHpS	
PFHpA	PFTrDA		PFMPA	
•			PFMBA	
PFOA	NMeFOSAA		PFPeA	
PFOS	NEtFOSAA		PFPeS	
PFNA	PFNA 11Cl-PF3OUdS		4:2 FTS	
1111/7	110,1130003		6:2 FTS	
PFDA	9Cl-PF3ONS		8:2 FTS	

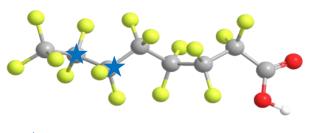
PFAS Methods

Drinking Water

533	537.1
Drinking Water	Drinking Water
Branched/Linear Isomers -YES	Branched/Linear Isomers -YES
14 of the same and 15 unique compounds	14 of the same and 4 unique compounds
SPE WAX	SPE SDVB
Hold Time: 28/28 days	Hold Time: 14/28 days
LCMSMS with confirmation ion	LCMSMS - no confirmation ion
Isotope Dilution	Internal standard
Recovery Correction - YES	Recovery Correction – NO
RLs: Not defined	RLs: 2ppt - 40ppt

Labeled Analogues




The Parr Family = Native PFOS

The Incredible Family = <u>Labeled PFOS</u>

sotop

Dilution

Benefits of Isotope Dilution

What affects the native analyte will equally affect the isotope

Calibration

Most accurate and precise method

Target analytes are quantitated against structurally similar materials, the isotopes themselves Matrix Mitigation

Expands ability to process a broader range of matrices

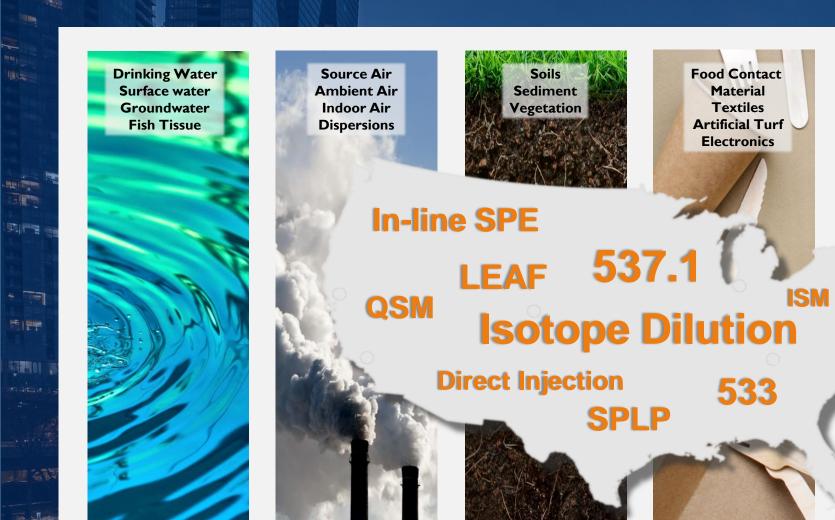
ompound Identification

Reduces the potential for false positives

Reduces the potential for error; corrects for retention time shifts

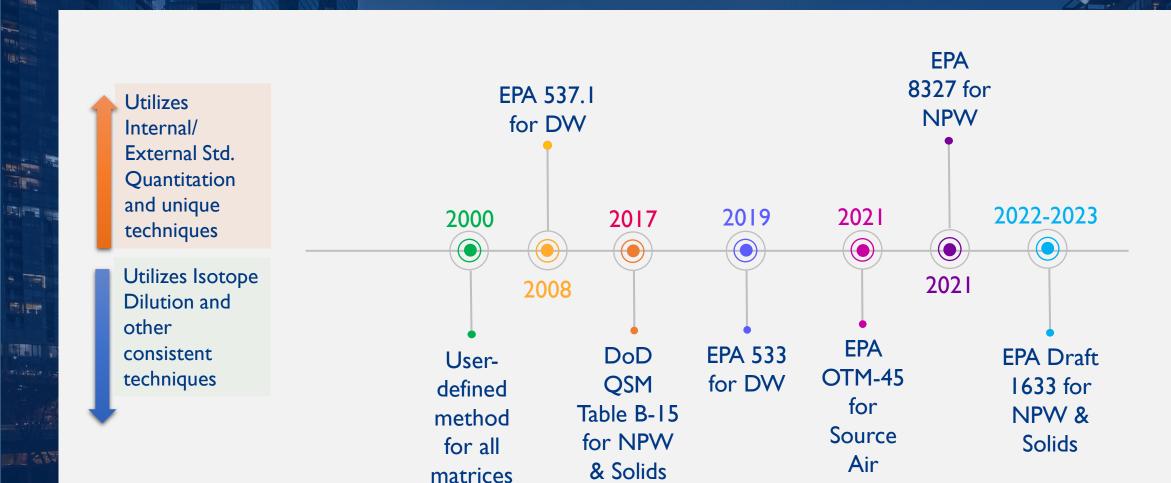
NON-POTABLE WATER & SOLIDS

User-Defined Isotope Dilution Method
EPA 8327
EPA Draft 1633 Method
Air Methods



Environment Testing America

eurofins Environment Testing


Comprehensive PFAS Testing

Methods Distribution

User-Defined Methods: PUTTO THE TEST!

Complex Matrices

Biphasic

Biosolids

Tissues

Dispersions

Activated Carbon

Cosmetics

Concrete

NELAC

Audits

DoD ELAP

Client/Program Specific Audits

Semiannual PT

NMI International Round Robin

DOW Study

>85% of all PFAS data includes a validation package

>300,000 sample data validated

Compounds Included in EPA Draft 1633 (RLs = 2-5ng/L)		Target Compounds Not Part	of EPA Draft 1633 (RLs = 2-5ng/L)
Perfluorobutanoic acid (PFBA)	NEtFOSA	10:2 FTS	EVE Acid
Perfluoropentanoic acid (PFPeA)	NMeFOSA	6:2 FTCA	PFO5DA
Perfluorohexanoic acid (PFHxA)	NMeFOSAA	8:2 FTCA	PMPA
Perfluoroheptanoic acid (PFHpA)	NEtFOSAA	10:2 FTCA	PEPA
Perfluorooctanoic acid (PFOA)	NMeFOSE	6:2 FTUCA	MTP
Perfluorononanoic acid (PFNA)	NEtFOSE	8:2 FTUCA	PS Acid
Perfluorodecanoic acid (PFDA)	4:2 FTS	10:2 FTUCA	Hydro-PS Acid
Perfluoroundecanoic acid (PFUnA)	6:2 FTS	PFECHS	R-PSDA
Perfluorododecanoic acid (PFDoA)	8:2 FT5	PFPrS	Hydrolyzed PSDA
Perfluorotridecanoic acid (PFTriA)	9CI-PF3ONS	PFPrA	R-PSDCA
Perfluorotetradecanoic acid (PFTeA)	11CI-PF3OUdS	PFMOAA	6:2 diPAP
Perfluorobutanesulfonic acid (PFBS)	DONA	PFECAG	8:2 diPAP
Perfluoropentanesulfonic acid (PFPeS)	HFPO-DA (GenX)	PFO4DA	6:2/8:2 diPAP
Perfluorohexanesulfonic acid (PFHxS)	3:3 FTCA	PFO3OA	10:2 diPAP
Perfluoroheptanesulfonic Acid (PFHpS)	5:3 FTCA	PFO2HxA	10:2 FTOH (RL=1ug/L)
Perfluorooctanesulfonic acid (PFOS)	7:3 FTCA	R-EVE	8:2 FTOH (RL=1ug/L)
Perfluorononanesulfonic acid (PFNS)	NFDHA	NVHOS	7:2 FTOH (RL=1ug/L)
Perfluorodecanesulfonic acid (PFDS)	PFMBA	Hydro-EVE Acid	6:2 FTOH (RL=1ug/L)
Perfluorododecanesulfonic acid (PFDoS)	PFMPA	Perfluoro-n-octadecanoic acid (PFODA)	4:2 FTOH (RL=1ug/L)
Perfluorooctanesulfonamide (FOSA)	PFEESA	Perfluoro-n-hexadecanoic acid (PFHxDA)	

eurofins Environment Testing America

EPA <u>Draft</u> 1633 for Non-Potable Water & Solids

Compared to: User-Defined Methods and DoD QSM Table B-15

SIMILARITIES

- Applicable to a variety of solids and aqueous matrices
- Solid Phase Extraction using WAX
- Isotope Dilution Quantitation using all available isotopes
- Ion Transitions, monitoring ratios
- *Using non-Extracted Internal Standards (NEIS) for quantitation of extracted internal standards (EIS)
- **Use of carbon cleanup

*QSM 5.3 dropped it, but they are bringing it back with B-24

**User-defined methods use stacked carbon vs. loose carbon

DIFFERENCES

- Frozen storage requirements
- Soil/Tissue Prep: concentration step
- S/N Ratio
- Waters Oasis WAX SPE Cartridge with loose carbon cleanup
- TDCA Check: 60 sec window specification
- E-flagged results: complex dilution scheme
- Mass transitions vary for some

How 8327 Compares to Draft 1633

EPA 8327

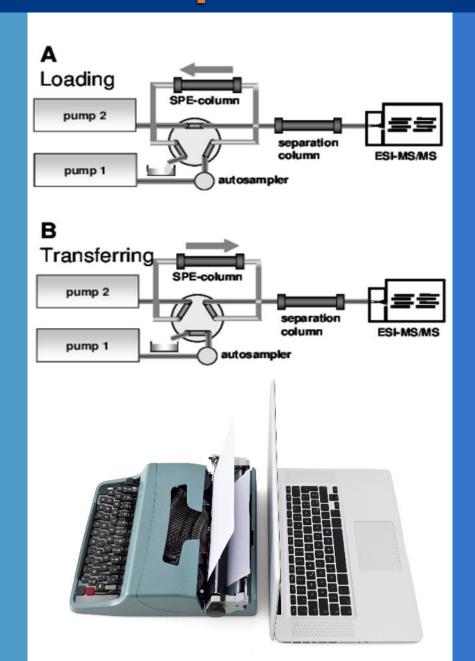
Specifications

Applies to non-potable water (NPW)

Applies to 24 compounds

External Standard

Direct Injection – no SPE


Recovery Correction - NO

Hold Time: 28/30 days

LCMSMS with confirmation ion

Branched/Linear Isomers -YES

RLs: 10ppt

EPA Draft 1633

Specifications

Applies to NPW, soil, tissue

Applies to 40 compounds

Isotope Dilution

SPE WAX

Recovery Correction - YES

Hold Time: Varies, 90/90 days option when frozen, 7/28 days when

refrigerated

LCMSMS with confirmation ion

Branched/Linear Isomers -YES

RLs: 2ppt

Source Air EPA OTM 45

Application: Semivolatile and particulate-bound PFAS from Source Air Emissions

Sample Collection: Based off of EPA Method 0010

Sample Preparation: Based off of 3542

Analysis: LCMSMS with Isotope
Dilution based off of EPA Method
533

Ambient Air Modified TO-13A / LCMSMS

Application: Semivolatile and particle-bound PFAS in Ambient Air

Sample Collection: PUF/XAD
Cartridge based off of EPA Method
TO-13A

Sample Preparation: Methanol Extraction based off of User-defined method

Analysis: User-defined method for PFAS by LCMSMS with Isotope Dilution

Vapor Modified TO-17 / GCMSMS

Application: Volatile PFAS in Indoor Air and Soil Vapor

Sample Collection: Thermal
Desorption Tube based off of EPA
Method TO-17

Sample Preparation: Thermal Desorption based off of EPA Method TO-17

Analysis: User-defined method for PFAS by GCMSMS

https://www.epa.gov/sites/production/files/2021-01/documents/otm 45 semivolatile pfas 1-13-21.pdf

AMBIENT AIR

States Establish Limits

State	PFOA	PFOS	APFO	6:2FTS
NH	N/A	N/A	0.024ug/m3 (annual)	N/A
TX	0.005ug/m3 (annual)	0.01ug/m3 (annual)	0.01ug/m3 (annual)	N/A
MI	0.07ug/m3 (24hr)	0.07ug/m3 (24hr)	N/A	I.0ug/m3 (annual)
NY	0.0053ug/m3 (annual)	N/A	N/A	N/A
MN	0.07ug/m3 (24hr->8yr)	0.07ug/m3 (24hr->8yr)	N/A	N/A

https://www.dec.ny.gov/docs/air_pdf/dar1proposed.pdf

https://www.health.state.mn.us/communities/environment/risk/guidance/air/table.html#hbvsraas

http://www2.des.state.nh.us/OneStopPub/Air/330110016520060807TypeAOC.pdf https://www.michigan.gov/documents/deq/deq-aqd-toxics-ITSLALPH_244167_7.pdf

537.1

Drinking Water – 18 Compounds

SDVB SPE Extraction, External Standard Quantitation

A great example of collaboration applied in real world applications

OTM-45

Source Air – • up to 50 Compounds

Sample collection and analysis references standard EPA methods and isotope dilution

EPA (\%) **Methods**

533

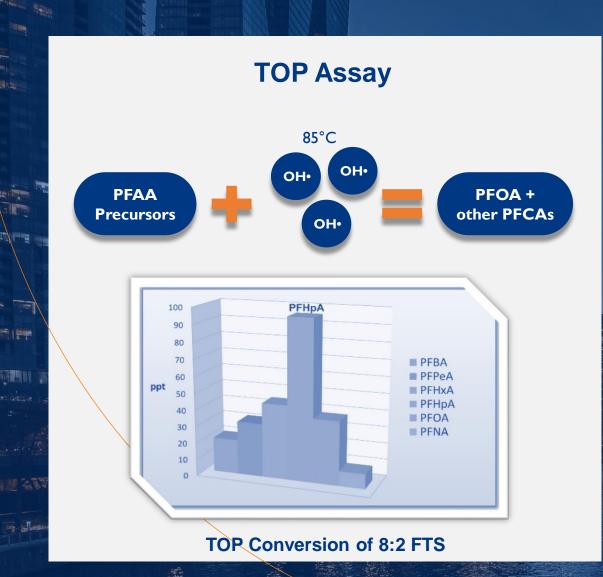
Drinking Water –
25 Compounds
WAX SPE Extraction,
Isotope Dilution Quantitation

EPA 8327 24 Compounds Non-Potable Water

Draft 1633

Non-Potable Water & Solids –
40 Compounds

WAX SPE Extraction
Secondary Ion Confirmation
Isotope Dilution Quantitation


EMERGING TECHNOLOGIES

TOP Assay
Total Organic Fluorine (TOF)
Non-Target Analysis (NTA)

Total Oxidizable Precursors

Total Organic Fluorine Analysis TF CIC AOF EOF

CIC: Combustion Ion Chromatography

Strengths & Weaknesses

Strengths & Utility

- AOF/EOF:
 - Proxy for entire class of PFAS
 - Mass balance applications
- TOP Assay:
 - Insight specific to current risk drivers
 - Sensitivity at single digit
 ppt

Weaknesses

- AOF/EOF:
 - Ippb reporting limit
 - Subject to certain interferences
- TOP Assay:
 - Oxidizable precursors only
 - Does not complete a mass balance

TOF & TOP Standardization Efforts

Non-Target Analysis

LC-QToF-MS

Liquid Chromatography

Quadrupole Time of Flight

Mass Spectrometry

Targeted Analysis

Suspect Screening Analysis Non-Targeted Analysis

Targeted PFAS

All Matrices - Up to 80 Analytes

Strengths: Selectivity

Sensitivity at ~1-5ppt

Can be used for risk assessment

Weaknesses: Limited list of

compounds

TOP Assay

All Matrices – Oxidizable Precursors

Strengths: Sensitivity at ~1-5ppt

Specific to 'unknowns' with potential to

convert to risk drivers

Weaknesses: Not specific

Does not complete a mass balance

Non-Target Analysis

All Matrices - Unknowns

trengths: Ability to identify 'unknowns'

with specificity

Ability to conduct novel compound

identification

Neaknesses: Limited to current libraries

Limited quantitation

Total Organic Fluorine

All Matrices – Organic Fluorine

Strengths: Closest to a mass balance

Weaknesses: Sensitivity at ~1ppb

No selectivity

THE NEXT FRONTIER

Sub-ppt Reporting Limits

Environment Testing America

PFAS in Human Serum / Blood

PFAS analysis from a single drop of blood, sampled by the end user

What can it do?

- Direct injection valid for 70+ compounds
- 2ppt reporting limits with standard volumes of 250mLs or less
- Sub-ppt analysis in our sights

QUESTIONS?

Charles.Neslund@ET.EurofinsUS.com 717-799-0439

Environment Testing America

